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Abstract. The DC and AC happing conduction in Some fractal systems are studied. The DC 
conductivity is analysed in some partial fryctal systems where both locahxd and superlocalized 
slates exist The AC conductivity " ( U )  IS shown to scale BS w[In(v,~/~)](~'~-"' '  and 
is proponiond approximately to 0' with s = 0.88 For three-dimensional percolation. The 
ambiguities in the analysis of conductivity data are discussed and it is pointed out that the 
measurement of some characteristic length scales is very important in analysing the hoppmg 
mechanism and the origin of localization from experimental results. 

1. Introduction 

The hopping conductivity of insulators at low temperatures can usually reflect the conducting 
mechanism and can in principle be used to determine the physical origin which is responsible 
for the insulating character of the material. Some disordered materials possess fractal 
structure over a certain range of length scales and the introduction of fractal concepts has 
been successful in the identification of many physical properties in topologically disordered 
systems. It is therefore of  importance to study the hopping conduction in fractal systems. 

Electronic states in fractals have wavefunctions decaying faster than exponentially (Lbvy 
and Souillard 1987) 

where L is the (Euclidean) localization length and < > 1 is the superlocalization exponent. 
This superlocalization character of wavefunctions may have important consequences. 
Deutscher and co-workers (1987) have extended Matt's variablerange hopping idea to 
fractals and found that the DC conductivity is characterized by an exponent related to 5 
and the fractal dimension D .  This hopping mechanism in fractals was later discussed 
more carefully by Harris and Aharony (1987). Their results are applicable to systems with 
large correlation length where all the electronic states are superlocalized. There are materials 
where the correlation length is not very large so that both localized and superlocalized states 
exist. The hopping conduction in such systems is one problem that we would examine here. 
The hopping conductivity for alternating currents in fractals is studied for the first time 
in this paper. It is found that a(@) scales as o[In(v,h/w)]'Df2-')'' and is proportional 
approximately to w' with s = 0.88 for three-dimensional percolation. Possible dimensional 
crossover behaviour of hopping conduction in some partial fractal systems is elucidated. 
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The ambiguities in the analysis of conductivity data are discussed and we point out that the 
measurement of some characteristic length scales is very important for a reliable analysis. 

This paper is organized as follows. In section 2 we study the DC conductivity in systems 
with both localized and superlocalized electronic states. Section 3 is devoted io the study of 
the effect of superlocalization on the AC hopping conductivity and in section 4 we discuss the 
possible dimensional crossover of the hopping conduction in some partial fractal systems. 
Conclusions of this paper are given in section 5. 

2. DC hopping conductivity in some partial fractal systems 

The behaviour of the DC conductivity at low temperatures is usually of the type 
exp[-(To/T)g] and is thus characterized by the exponent j3. There have been several 
conducting mechanisms leading to different values of B.  

(i) j3 = 1, which is for the thermally activated hopping of carriers at the mobility edges 
into extended states or carriers excited into localized states at the band edges. 

(ii) j3 = I/(d + I ) ,  known as the Mott relation (Moa 1968, 1969), characterizes the 
variable-range hopping (VRH) of carriers between the electronic states at the Fermi lcvel 
with Anderson (strong) localization. Here d > 1 is the space dimension. 

(iii) j3 = C / ( D  + <) (Deutscher er al I987), where D is the fractal dimension and < 
is the superlocalization exponent, results from the VRH of carriers between electronic states 
with superlocalized wavefunctions in fractals. 

If the Coulomb interaction between electrons is important, one has j3 = 1 (Efros and 
Shklovskii 1975) for Euclidean systems and j3 = </({ + 1) (van der Puttern er al 1992) in 
the fractal cases. For clarity we shall not address the problcm of the Coulomb interaction 
effect here. 

Fractal geometry is believed to be relevant within a certain range of length scales in 
real materials: U 4 r e 2 ,  where Q is the size of the smallest unit and 6 is the correlation 
length. At length scales greater than 6, the system can be regardcd as homogeneous and 
the usual Euclidean scaling is resumed. It is thus important to compare the localization 
length L with the correlation length 6. If L e 6, the electron feels the self-similar character 
of the system and the wavefunction decays following (1) up to and continues to fall 
off exponentially at larger distances. Otherwise the electrons do not feel the fractal nature 
of the system and the wavefunction decays exponentially, VRH in the fractal regime can 
be expected if the correlation length .$ is large enough so that all the electronic states are 
superlocalized. Another quantity, the optimal hopping distance rh, is also important in 
determining the exponent j3. If rh is found to be much larger than 6, the exponents D and 
have 10 be replaced by d and unity, i.e.. their values in the homogeneous regime (Deutscher 
er a1 1987). Therefore the VRH in the fractal regime appears only if 

a << L < rh < ( E  (2) 
as pointed out by Aharony et a1 (1993a). 

There are materials in which electronic states at different sites possess different 
localization length. An illustrative example is the granular materials, where the localization 
length L is proportional to the granular size x. When the grain size is changed, L / x  does 
not vary (Deutscher eta1 1987). If the system is composed of grains with different size, the 
localization lengths of individual electronic states may differ From each other significantly. 
When the correlation length is not very large or small (which is often true for practical 
materials), one expects that the localized (with L > E )  and superlocalized (with L c 6) 
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electronic states coexist. The character of VRH in such systems may be different from that 
in the Euclidean case or pure fractal regime (where the correlation length scale 6 is large 
enough so that all the states are superlocalized). 

Following the Mott argument, the hopping probability p is proportional to the product 
of two terms: 

P - I~i(r)lzexp[-AE(r)/ksT1. (3) 
The first term is essentially the probability of finding the electron at distance r from its initial 
site [Zallen 1983). and the second one represents the Boltzmann factor for the phonon- 
mediated hopping process. It is obvious that the hopping probability i s  dependent upon the 
character of localization of the initial state. We assume that the localized and superlocalized 
electronic states are randomly distributed in energy as well as in space, with a uniform 
distribution given by N(EF) ,  the density of states at energies close to the Fermi energy 
EF, and restrict the following calculations to the range r h  < ty since the Mott relation is 
recovered for r h  =- 5. Then one has (Deutscher eta1 1987) 

(4) 
1 

ad-DN(  EF)rD 
AE(r)  = 

where D is the fractal dimension. 
In the optimization of equation (3), we encounter two different cases depending on 

whether the initial state is localized or superlocalized. 

Case A. The initial state is localized with localization length L1 > 6 .  Then substituting 
@(I) - exp(-r/Ll) and equation (4) into equation (3), one can find the optimal hopping 
distance 

and the exponent 

(6) 
1 p = -  

D + 1 '  
Case B. $ ( r )  - exp[-(r/Lz)t] with c > 1 and LZ e 6 .  Then one has 

and 

In order to see which process is more favourable, we discuss the variation of the quantity 
p*,,,/pem with temperature, where PA,,, denotes the optimal hopping probability of case A, 
and pBm that of case B. It is related to r A  and rB  by 

Therefore p~~ equals pen, if r A  = (LI/Lz)ri(l  +c/D)/(l  + l / D ) ,  01 
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and case A (which is characterized by the exponent ,4 = 1 / ( D  + I ) )  will be more favourable 
if T << TO. On the contrary, case B (with p = < / ( D  + 0) becomes the dominant process 
when T >> To. In the intermediate-temperature region, one expects a complicated crossover 
behaviour. This kind of crossover may bring about difficulties in analysing the experimental 
data, as will be discussed in section 4. 

3. Frequency dependence of the hopping conductivity in fractals 

The AC conductivity of a wide variety of materials varies as U' with s of the order of 0.8 
(see Mott and Davis 1979). The two-site or pair approximation has been shown (Poll& 
and Geballe 1961) to give such a power law frequency dependence in a large frequency 
range. We shall now examine the implication of fractals on the frequency dependence of the 
hopping conductivity. The study here follows the development of Mott and Davis (1979). 

Adapted to our case, the analysis of Mott and Davis is as follows. 
Rewriting equation (3), the mean jump time between two sites of distance R apart is 

where Uph is the frequency of the phonon involved in the hopping process. 
The number of electrons participating in the hopping is N(EF)kBT per unit volume. 

Supposing that only hops of energy - kBT make an important contribution, then the last 
factor in equation (1  I )  is of order unity. The number of vacant states into which an electron 
can jump is then N(EF)kBT. The important hops have WT - I, that is for which the 
hopping distance is R ,  where 

I IZ 
R = L [i In (:)I 

and a range of A R  is taken to give a significant contribution where 

The hopping distance R here must satisfy R < e ,  otherwise the hop does not feel the 
existence of fractal geometry and the usual Euclidean scaling is recovered. Considering 
that the number of available empty states is proportional to RD-' A R ,  we have 

~ ( w )  -. ksTWR2RD-' A R  

or, replacing R and A R  with the expressions given in equations (12) and (13). 

One can see that < and D enter the exponent again, as in the DC conductivity. If 
we set D = d and C = I ,  equation (14) then resumes the Euclidean scaling, i.e.. 
u(w) - w [In (uph/w)ld+' .  

The frequency dependence can usually be written as U [ W )  c( d. where s is a weak 
function of frequency if w << Vph, which means that Ino(w) versus Inw should scale 
approximately linearly with slope s given by 

1 
t U 

(15) s = dlnu(o) /d( lnw)  = 1 - - ( D  + 2 - < ) / I n  (3). 
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A plot of logo(u) versus logw for various values of uph is given in figure 1. The curve 
of s against Iog(uph/w) is shown in figure 2. The data used in the calculation are those of 
3D percolation: < = 1.36 (Aharony et al 1993a) and D = 2.5. One can see that i f  uPh/w 
is of the order of IO8, s is about 0.88, a value close to 0.8, which is often observed (Mott 
and Davis 1979). The fractal dimension dependence of the exponent s. on the other hand, 
is not easy to determine from equation (15) since t is usually relevant to D. However, 
under the argument 5 = d ~ "  (Aharony et al 1993a) where d,j. describes the scaling of the 
average minimal path along the bonds of the fractal, I' does not change significantly when 
D changes. Therefore one can take C as a constant approximately and see that s changes 
linearly with the fractal dimension D. 

2 3 4 5 6 7 8  

' ~ 1 0 "  

Figure 1. A plot of logA(w) against logw for various values of uph where A b )  = 
w[ln(vp~/w)](D'z-r"t.  Curvesn, b. c and d conespondto YM = IO'". IO". IO" and IO" Hz 
respectively, and lhe 3D percolalion values for D and < are used. 

In the above analysis, i t  has been supposed that the electron goes through the barrier 
between the two sites, instead of over it. It should also be noted that equation (14) is 
deduced subject to two assumptions (Mott and Davis 1979): (1) kBT << EF and (2) the 
resonance energy of centres of distance R apart is less than k s T .  

Equation (14) characterizes the hopping of carriers between superlocalized states. If 
there are both localized and superlocalized states in one material, one expects u ( w )  - 
u J [ h ( " ~ h / W ) ] ~ + ~  for the hopping from localized states in the fractal regime, and 
w [In ("ph@)](D+Z-O" for that from superlocalized states. However, the effective exponent 
s is not expected to v q  significantty for these two cases. It is therefore not easy to see 
whether the hopping occurs for the localized or superlocalized states for a specific material 
from experimentally observed u ( w )  - w' results. 
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Figure 2. The exponenl s of 3D percolalion as a function of v ~ / o .  One cm see that s is about 
0.88 for vDh Jo = IO'. 

4. Discussion 

In real materials with fractal structure, there is always a correlation length 5 which separates 
the fractal regime from the Euclidean regime. If the characteristic length of a certain physical 
quantity changes with external conditions-such as temperature, pressure-to cross 6 ,  the 
crossover from the bulk Euclidean to fractal geometry is reflected in the change of the 
quantity. This dimensional crossover has several implications. The phonon (magnon)- 
fracton crossover which was first discussed by Alexander and Orbach (1982) may be an 
important one. Gordon el a1 (1987) have also found that the superconducting transition 
of a three-order Sierpinski wire network exhibits this crossover. This kind of dimensional 
crossover is essentially identical to the 3D to 2D crossovers observed in many high-Tc 
cuprates (see, for example. Gao er al 1993) and some layered magnets; the difference is 
that in those cases the crossovers occur between integer dimensions. Since the hopping 
distance of DC conduction is dependent on the temperature, and that of AC conduction is 
sensirive to the frequency w, i t  is very likely that the dimensional crossover could occur for 
the conductivity from Euclidean scaling to fractal scaling. 

These crossovers indeed make it very difficult to discuss the hopping mechanism and 
the origin of the localization from experimentally observed conductivity data. People used 
to fit the experimental results with one theory and extract some exponents. Unfortunately, 
this kind of fit is often model dependent. It is possible to obtain puzzling different exponents 
based upon different theories. Aharony el al (1993s b) have shown that by allowing for 
a pre-exponential temperature-dependent factor, the data taken on carbon black polymer 
composites (van der Puttern et al 1992) may support percolation as well as non-pcrcolation 
exponents. Besides, the exponents of different mechanisms usually do not vary with each 
other significantly, which makes it dangerous to fit experiments with a single power law 
over a wide temperature range to find an effective value of 8.  Considering these. we 
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feel that some characteristic length scales should be determined from auxiliary experiments 
before a reliable fit. These length scales include the correlation length 6 (below which the 
system can be regarded as fractal), the localization length L (the state is localized if L > 6 
and superlocalizcd if L i 6) and the hopping distance r h  (the hop feels the existence of 
the self-similar feature if r h  c 6). Among the three lengths, the correlation length 6 can 
be measured by recording light scattering or neutron spectroscopy (Courtens et al 1989). 
The localization length can be evaluated through a magnetoresistance experiment (Sin er 
al 1984) since the value of the external magnetic field necessary to eliminate the strong 
localization effects is a function of the localization length The conducting mechanism 
will follow if one can manage to measure the hopping distance rh directly. The length is, 
however, not easy to determine to the present author’s knowledge. It has to be obtained 
together with the hopping mechanism from experiments self-consistently by a careful fit. 
However, the determination of L and 6 can be very helpful for one knows immediately 
the character of localization from them and whether a hopping mechanism is possible or 
not. The importance of comparing the length scales has been noticed by Deutscher et al 
(1987). However, they did not emphasize the significance of carrying out the comparison 
by experiment in determining the hopping mechanism and further analysing the origin of 
localization. 

The DC conductivity results of carbon black polymer composites have been 
controversially discussed (Aharony et U /  1993b,a, Michels er al 1993, van der Puttern 
et a1 1992). Michels and co-workers (van der Puttern et a1 1992, Michels et a1 1993) 
analysed the data in a generalized VRH picture and argued that their data can be regarded 
as evidence for VRH between superlocalized states on a fractal by assuming Coulomb- 
dominated hopping, while Aharony et a1 1993a, b felt that the exponent depends strongly 
on the analysis, and therefore confirms no theory. They further discussed the importance of 
including a pre-exponentially temperature-dependent factor in analysing the data. Although 
the prefactor is important in a quantitative fit to experiments, we think that in this situation 
it  is somewhat more helpful to determine the characteristic length scales. If 6 and L can 
be assessed from auxiliary experiments, it is easily clarified whether the hopping distances 
obtained by Michels et a1 are within the fractal regime (i.e., if r h  (< 6 holds) and this can 
at least be used to exclude some mechanisms. 

It is noteworthy that to study the superlocalization phenomena experimentally, the 
DC conduction is more advantageous than the AC conduction since the DC conductivity 
is more sensitive to the superlocalization property. Polymen and porous materials could be 
interesting systems to study the superlocalization property. On the other hand, to compare 
with experiments more quantitatively, computer simulation studies are necessary. Recently, 
Ortuiio and Ruiz (1992) have performed Monte Carlo simulation of the conductivity of a 
two-dimensional localized interaction system. Their results revealed clearly two distinct 
regimes, corresponding to nearest-neighbour and variable-range hopping and they estimated 
the transition temperature From the observed crossover. Similar work on hopping conduction 
in fractals has not been seen and research in this direction will be worthwhile. 

5. Conclusions 

We have studied the DC and AC conductivity in some fractal systems. In partial fractal 
substances where both localized and superlocalized electronic states exist, the DC hopping 
conductivity may cross over from one scaling to another with change of temperature. The 
frequency dependence of the hopping conductivity in fractals is given for the first time. 
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It is shown that u(w)  scales as w [ln(+,h/w)]'D+2-'"' and is proportional approximately 
to ws with s = 0.88 for the three-dimensional percolation. We demonstrate the possible 
dimensional crossover of hopping conduction in some partial fractal systems. It is pointed 
out that the measurement of some characteristic length scales is important in determining 
the hopping mechanism and further analysing the origin from experimental results. 

In this paper we have made the assumption of a smooth density of states near the 
Fermi level. This and some other simplifications might be not very realistic for a fractal. 
Therefore the discussions presented in this paper can be further improved if one knows the 
exact distribution of the density of states near the Fermi level and some other information 
for real fractal materials. These effects deserve further research. 
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